Add like
Add dislike
Add to saved papers

Cooperation of CD4 + T cells and CD8 + T cells and release of IFN-γ are critical for antileukemia responses of recipient mice treated by microtransplantation.

Previous studies have demonstrated that infusion of allogeneic matched and haploidentical peripheral blood stem cells with minimal conditioning (microtransplantation) achieved durable responses in patients with refractory leukemia/lymphoma in the absence of engraftment. The mechanisms underlying this response have not been thoroughly elucidated, while host-versus-graft reactions are likely to have an important role. The present study established a mismatched microtransplantation mouse model of leukemia to study the roles of CD4+ T cells and CD8+ T cells in changes of interferon (IFN)-γ and interleukin (IL)-4 release to explore the mechanisms of the effects of microtransplantation. It was demonstrated that IFN-γ is critical to the antileukemia response in a mouse model of microtransplantation. The therapeutic efficacy was associated with the number of CD4+ T cells (Pearson's r=0.722). In addition, CD8+ T cells increased the release of IFN-γ with assistance from CD4+ T cells. IL-2 augmented IFN-γ release, partly by increasing CD4+ T cells (42.8 vs. 35.6%; P<0.05). The present study suggested that the release of IFN-γ via cooperation of CD4+ T cells and CD8+ T cells represents a crucial mechanism in the antileukemia responses of recipient leukemic mice treated by microtransplantation. During this process, the cooperation of CD4+ T cells and CD8+ T cells was demonstrated to have a major role in the antileukemia effect. IL-2 may be developed into an agent used for improving the efficacy of microtransplantation by increasing CD4+ T cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app