Add like
Add dislike
Add to saved papers

Inducing Apoptosis and Decreasing Cell Proliferation in Human Acute Promyelocytic Leukemia Through Regulation Expression of CASP3 by Let-7a-5p Blockage.

MicroRNAs (miRNAs) are short and single strand non-coding RNAs that involved in post-transcriptional regulation of gene expression. Dysregulation of miRNA expression is important event in the many of malignant diseases. Up-regulation of Let-7a-5p expression in acute myeloid leukemia in human in previous studies was reported. In this study blockage of Let-7a-5p in human acute promyelocytic leukemia cell line (HL60) was done by using locked nucleic acid (LNA) method and subsequently expression of Let-7a-5p, cell proliferation, apoptosis, necrosis, and CASP3 expression was measured. At three time points 24, 48 and 72 h after LNA anti- Let-7a-5p transfection, assessment of Let-7a-5p expression by qRT real-time PCR was completed. The MTT assay and annexin/PI staining have been performed. Also, CASP3 expression at different time points after LNA anti-Let-7a-5p transfection in HL60 cell line was measured. The results at three-time points after LNA transfection were represented that Let-7a-5p expression was lower in the LNA-anti-Let-7a group compared to the control groups. The cell viability significantly was different between LNA-anti-Let-7a group and control groups. Increasing apoptotic ratio was associated with Let-7a-5p blockage in the LNA-anti-Let-7a group compared with control groups. Also, the necrotic ratio was higher in the LNA-anti-Let-7a group rather than the other groups. Western blotting revealed that CASP3 expression associated with Let-7a-5p inhibition. Our results displayed that blockage of Let-7a-5p can reduced cell viability mainly due to the induction of apoptosis and CASP3 up-regulation in HL60 cells. These results can be useful in translational medicine for research of antisense therapy in leukemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app