Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of human ATP-binding cassette protein subfamily D reconstituted into proteoliposomes.

In mammals, four ATP-binding cassette (ABC) proteins belonging to subfamily D have been identified. ABCD1‒3 are located on peroxisomal membrane and play an important role in the transportation of various fatty acid-CoA derivatives, including very long chain fatty acid-CoA, into peroxisomes. ABCD4 is located on lysosomal membrane and is suggested to be involved in the transport of vitamin B12 from lysosomes to the cytosol. However, the precise transport mechanism by which these ABC transporters facilitate the import or export of substrate has yet to be well elucidated. In this study, the overexpression of human ABCD1‒4 in the methylotrophic yeast Pichia pastoris and a purification procedure were developed. The detergent-solubilized proteins were reconstituted into liposomes. ABCD1‒4 displayed stable ATPase activity, which was inhibited by AlF3 . Furthermore, ABCD1‒4 were found to possess an equal levels of acyl-CoA thioesterase activity. Proteoliposomes is expected to be an aid in the further biochemical characterization of ABCD transporters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app