JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High-capacity ice-recrystallization endpoint assay employing superhydrophobic coatings that is equivalent to the 'splat' assay.

Cryobiology 2018 April
We have developed an ice recrystallization inhibition (IRI) assay system that allows the side-by-side comparison of up to a dozen samples treated in an identical manner. This system is ideal for determining, by serial dilution, the IRI 'endpoint' where the concentration of a sample is reached that can no longer inhibit recrystallization. Samples can be an order of magnitude smaller in volume (<1 μL) than those used for the conventional 'splat' assay. The samples are pipetted into wells cut out of a superhydrophobic coating on sapphire slides that are covered with a second slide and then snap-frozen in liquid nitrogen. Sapphire is greatly superior to glass in its ability to cool quickly without cracking. As a consequence, the samples freeze evenly as a multi-crystalline mass. The ice grain size is slightly larger than that obtained by the 'splat' assay but can be followed sufficiently well to assess IRI activity by changes in mean grain boundary size. The slides can be washed in detergent and reused with no carryover of IRI activity even from the highest protein concentrations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app