Add like
Add dislike
Add to saved papers

Biomimetic Nanovesicles for Enhanced Antitumor Activity of Combinational Photothermal and Chemotherapy.

The combination of multiple modalities has shown great potential in cancer treatment with improved therapeutic effects and minimized side effects. Here, we fabricated a type of doxorubicin-encapsulated biomimetic nanovesicle (NV) by a facile method with near-infrared dye insertion in the membrane for combinatorial photothermal and chemotherapy. With innate biomimetic properties, NVs enhanced the uptake by tumor cells while reducing the phagocytosis of macrophages. Upon laser irradiation, NVs can convert the absorbed fluorescent energy into heat for effective tumor killing. Hyperthermia can further induce membrane ablation of NVs to accelerate the release of chemotherapeutic drug for potent cytotoxicity to tumor cells. The NVs improved drug accumulation and showed a more efficient in vivo photothermal effect with a rapid temperature increase in tumors. Moreover, the NV-based combinational photothermal and chemotherapy exhibited significant tumor growth suppression with a high inhibitory rate of 91.6% and negligible systemic toxicity. The results indicate that NVs could be an appealing vehicle for combinational cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app