Add like
Add dislike
Add to saved papers

Label-Free Quantification of Small-Molecule Binding to Membrane Proteins on Single Cells by Tracking Nanometer-Scale Cellular Membrane Deformation.

ACS Nano 2018 Februrary 28
Measuring molecular binding to membrane proteins is critical for understanding cellular functions, validating biomarkers, and screening drugs. Despite the importance, developing such a capability has been a difficult challenge, especially for small-molecule binding to membrane proteins in their native cellular environment. Here we show that the binding of both large and small molecules to membrane proteins can be quantified on single cells by trapping single cells with a microfluidic device and detecting binding-induced cellular membrane deformation on the nanometer scale with label-free optical imaging. We develop a thermodynamic model to describe the binding-induced membrane deformation, validate the model by examining the dependence of membrane deformation on cell stiffness, membrane protein expression level, and binding affinity, and study four major types of membrane proteins, including glycoproteins, ion channels, G-protein coupled receptors, and tyrosine kinase receptors. The single-cell detection capability reveals the importance of local membrane environment on molecular binding and variability in the binding kinetics of different cell lines and heterogeneity of different cells within the same cell line.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app