Add like
Add dislike
Add to saved papers

microRNA-181a downregulates deptor for TGFβ-induced glomerular mesangial cell hypertrophy and matrix protein expression.

TGFβ contributes to mesangial cell hypertrophy and matrix protein increase in various kidney diseases including diabetic nephropathy. Deptor is an mTOR-interacting protein and suppresses mTORC1 and mTORC2 activities. We have recently shown that TGFβ-induced inhibition of deptor increases the mTOR activity. The mechanism by which TGFβ regulates deptor expression is not known. Here we identify deptor as a target of the microRNA-181a. We show that in mesangial cells, TGFβ increases the expression of miR-181a to downregulate deptor. Decrease in deptor augments mTORC2 activity, resulting in phosphorylation/activation of Akt kinase. Akt promotes inactivating phosphorylation of PRAS40 and tuberin, leading to stimulation of mTORC1. miR-181a-mimic increased mTORC1 and C2 activities, while anti-miR-181a inhibited them. mTORC1 controls protein synthesis via phosphorylation of translation initiation and elongation suppressors 4EBP-1 and eEF2 kinase. TGFβ-stimulated miR-181a increased the phosphorylation of 4EBP-1 and eEF2 kinase, resulting in their inactivation. miR-181a-dependent inactivation of eEF2 kinase caused dephosphorylation of eEF2. Consequently, miR-181a-mimic increased protein synthesis and hypertrophy of mesangial cells similar to TGFβ. Anti-miR-181a blocked these events in a deptor-dependent manner. Finally, TGFβ-miR-181a-driven deptor downregulation increased the expression of fibronectin. Our results identify a novel mechanism involving miR-181a-driven deptor downregulation, which contributes to mesangial cell pathologies in renal complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app