Add like
Add dislike
Add to saved papers

Characterization of bone morphology in CCN5/WISP5 knockout mice.

CCN5/WISP2 is part of the CCN family of matricellular proteins, but is distinct in that it lacks the C-terminal (CT) domain. Although CCN5 has been shown to impact cell proliferation and differentiation in vitro, its role in vivo is unclear. We therefore generated mice using ES cells developed by the Knockout Mouse Project (KOMP) in which exons 2-5, which encode the all of the conserved protein coding regions, are replaced by a lacZ cassette. Ccn5 LacZ/LacZ mice were viable and apparently normal. Based on previous studies showing that CCN5 impacts osteoblast proliferation and differentiation, we performed an analysis of adult bone phenotype. LacZ expression was examined in adult bone, and was found to be strong within the periosteum, but not in trabecular bone or bone marrow. Micro-CT analysis revealed no apparent changes in bone mineral density (BMD) or bone tissue volume (BV/TV) in Ccn5 LacZ/LacZ mice. These studies indicate that CCN5 is not required for normal bone formation, but they do not rule out a role in mechanotransduction or repair processes. The availability of Ccn5 LacZ mice enables studies of CCN5 expression and function in multiple tissues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app