Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

10 Be-inferred paleo-denudation rates imply that the mid-Miocene western central Andes eroded as slowly as today.

Scientific Reports 2018 Februrary 3
Terrestrial cosmogenic nuclide concentrations of detrital minerals yield catchment-wide rates at which hillslopes erode. These estimates are commonly used to infer millennial scale denudation patterns and to identify the main controls on mass-balance and landscape evolution at orogenic scale. The same approach can be applied to minerals preserved in stratigraphic records of rivers, although extracting reliable paleo-denudation rates from Ma-old archives can be limited by the target nuclide's half-life and by exposure to cosmic radiations after deposition. Slowly eroding landscapes, however, are characterized by the highest cosmogenic radionuclide concentrations; a condition that potentially allows pushing the method's limits further back in time, provided that independent constraints on the geological evolution are available. Here, we report 13-10 million-year-old paleo-denudation rates from northernmost Chile, the oldest 10 Be-inferred rates ever reported. We find that at 13-10 Ma the western Andean Altiplano has been eroding at 1-10 m/Ma, consistent with modern paces in the same setting, and it experienced a period with rates above 10 m/Ma at ~11 Ma. We suggest that the background tectono-geomorphic state of the western margin of the Altiplano has remained stable since the mid-Miocene, whereas intensified runoff since ~11 Ma might explain the transient increase in denudation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app