Add like
Add dislike
Add to saved papers

Inactivation of ribosomal protein S27-like confers radiosensitivity via the Mdm2-p53 and Mdm2-MRN-ATM axes.

Cell Death & Disease 2018 Februrary 3
RPS27L (ribosomal protein S27-like) is an evolutionarily conserved ribosomal protein and a direct p53 target. We recently reported that Rps27l disruption triggers ribosomal stress to induce p53, causing postnatal death, which can be rescued by Trp53 +/- . Whether and how Rps27l modulates radiosensitivity is unknown. Here we report that Rps27l -/- ; Trp53 +/- mice are extremely sensitive to radiation due to reduced proliferation and massive induction of apoptosis in radiation-sensitive organs. Mechanistically, the radiation sensitivity is mediated by two signaling pathways: (1) activated p53 pathway due to imbalanced Mdm2/Mdm4 levels and reduced E3 ligase activity; and (2) reduced DNA damage response due to reduced MRN/Atm signal as a result of elevated Mdm2 binding of Nbs1 to inhibit Nbs1-Atm binding and subsequent Atm activation. Indeed, heterozygous deletion of Mdm2 restores the MRN/Atm signal. Collectively, our study revealed a physiological condition under which Rps27l regulates the Mdm2/p53 and MRN/Atm axes to maintain DNA damage response and to confer radioprotection in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app