Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Interleukin-10 Directly Inhibits CD8 + T Cell Function by Enhancing N-Glycan Branching to Decrease Antigen Sensitivity.

Immunity 2018 Februrary 21
Chronic viral infections remain a global health concern. The early events that facilitate viral persistence have been linked to the activity of the immunoregulatory cytokine IL-10. However, the mechanisms by which IL-10 facilitates the establishment of chronic infection are not fully understood. Herein, we demonstrated that the antigen sensitivity of CD8+ T cells was decreased during chronic infection and that this was directly mediated by IL-10. Mechanistically, we showed that IL-10 induced the expression of Mgat5, a glycosyltransferase that enhances N-glycan branching on surface glycoproteins. Increased N-glycan branching on CD8+ T cells promoted the formation of a galectin 3-mediated membrane lattice, which restricted the interaction of key glycoproteins, ultimately increasing the antigenic threshold required for T cell activation. Our study identified a regulatory loop in which IL-10 directly restricts CD8+ T cell activation and function through modification of cell surface glycosylation allowing the establishment of chronic infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app