Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Constitutive modeling of compressible type-I collagen hydrogels.

Collagen hydrogels have been used ubiquitously as engineering biomaterials with a biphasic network of fibrillar collagen and aqueous-filled voids that contribute to a complex, compressible, and nonlinear mechanical behavior - not well captured within the infinitesimal strain theory. In this study, type-I collagen, processed from a bovine corium, was fabricated into disks at 2, 3, and 4% (w/w) and exposed to 0, 105 , 106 , and 107 microjoules of ultraviolet light or enzymatic degradation via matrix metalloproteinase-2. Fully hydrated gels were subjected to unconfined, aqueous, compression testing with experimental data modeled within a continuum mechanics framework by employing the uncommon Blatz-Ko material model for porous elastic materials and a nonlinear form of the Poisson's ratio. From the Generalized form, the Special Blatz-Ko, compressible Neo-Hookean, and incompressible Mooney-Rivlin models were derived and the best-fit material parameters reported for each. The average root-mean-squared (RMS) error for the General (RMS = 0.13 ± 0.07) and Special Blatz-Ko (RMS = 0.13 ± 0.07) were lower than the Neo-Hookean (RMS = 0.23 ± 0.10) and Mooney-Rivlin (RMS = 0.18 ± 0.08) models. We conclude that, with a single fitted-parameter, the Special Blatz-Ko sufficiently captured the salient features of collagen hydrogel compression over most examined formulations and treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app