JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Design and synthesis of novel dasatinib derivatives as inhibitors of leukemia stem cells.

We used the concept of bioisosteres to design and synthesize a novel series of dasatinib derivatives for the treatment of leukemia. Unfortunately, most of the dasatinib derivatives did not show appreciable inhibition against leukemia cell lines K562 and HL60. However, acrylamide compound 2c had comparable inhibitory activity with dasatinib against K562 cells (IC50  = 0.039 nM vs. 0.069 nM). And amide compound 2a and acrylamide compound 2c also had comparable inhibitory activity with dasatinib against the leukemia cell line HL60 (IC50  = 0.25 nM and 0.26 nM vs. 0.11 nM). Against the leukemia progenitor cell line KG1a, triazole compounds 15a and 15d-15f and oxadiazole compounds 24a-24d were more potent than dasatinib. In particular, the hydroxyl compounds 15a and 24a were about 64 and 180 fold more potent than dasatinib against KG1a cells (IC50  = 0.14 μM and 0.05 μM vs. 8.98 μM). Compounds 15a and 24a also inhibited colony formation in MCF-7 cells and inhibited cell migration in the cell wound scratch assay in B16BL6 cells. Moreover, hydroxyl compounds 15a and 24a had low toxicity in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app