Add like
Add dislike
Add to saved papers

Reduced-HMGB1 suppresses poly(I:C)-induced inflammation in keratinocytes.

BACKGROUND: High mobility group box 1 (HMGB1) is a nuclear protein that stabilizes DNA and facilitates gene transcription. Additionally, cell stress or death induces the release of HMGB1 outside the cell membrane, where HMGB1 functions as an alarmin, causing an inflammatory response in combination with other cytokines, damage-associated molecular patterns (DAMPs), and pathogen-associated molecular patterns (PAMPs).

OBJECTIVE: To evaluate the effect of reduced-HMGB1 (previously termed chemoattractive-HMGB1) on polyinosine-polycytidylic acid [poly(I:C)]-induced inflammation in normal human keratinocytes (NHKs).

METHODS: We focused on downstream components of the poly(I:C)-Toll-like receptor 3 (TLR3), retinoic acid-inducible gene-I (RIG-I), and melanoma differentiation-associated protein 5 (MDA5) pathways, including IκBα, nuclear factor (NF)-κB p65, mitogen-activated protein kinase (MAPK), and interferon regulatory factor 3 (IRF3), and assessed whether these pathways are involved in the suppression of poly(I:C)-induced inflammation in NHKs by HMGB1. An immunoprecipitation was performed to know whether HMGB1 could bind to poly(I:C), and immunofluorescence staining and flow cytometric analysis were performed to check whether reduced-HMGB interferes with cellular uptake of poly(I:C) translocation (possibly by endocytosis).

RESULTS: Application of exogenous HMGB1 before, but not after, exerted a suppressive effect on poly(I:C)-induced inflammation in NHKs. In addition, reduced-HMGB1, but not disulfide-HMGB1, exerted a suppressive effect on poly(I:C)-induced inflammation in NHKs, suggesting the importance of the redox status of exogenous HMGB1. Pre-treatment with reduced-HMGB1 inhibited the phosphorylation of IκBα, NF-κB p65, and IRF3 induced by poly(I:C) stimulation in NHKs; however, phosphorylation of p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) was unaffected. Disulfide-HMGB1 formed a complex with poly(I:C), as did reduced- and oxidized-HMGB1, albeit to a lesser extent. Immunofluorescence staining and flow cytometric analysis indicated that reduced-HMGB interferes with cellular uptake of poly(I:C) translocation (possibly by endocytosis).

CONCLUSION: These findings suggest that pre-treatment with reduced-HMGB1 ameliorates poly(I:C)-mediated inflammation in NHKs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app