JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Copper efflux transporters ATP7A and ATP7B: Novel biomarkers for platinum drug resistance and targets for therapy.

IUBMB Life 2018 March
Platinum-based chemotherapy agents are widely used in the treatment of various solid malignancies. However, their efficacy is limited by drug resistance. Recent studies suggest that copper efflux transporters, which are encoded by ATP7A and ATP7B, play an important role in platinum drug resistance. Over-expressions of ATP7A and ATP7B are observed in multiple cancers. Moreover, their expressions are associated with cancer prognosis and treatment outcomes of platinum-based chemotherapy. In our review, we highlight the roles of ATP7A/7B in platinum drug resistance and cancer progression. We also discuss the possible mechanisms of platinum drug resistance mediated by ATP7A/7B and provide novel strategies for overcoming resistance. This review may be helpful for understanding the roles of ATP7A and ATP7B in platinum drug resistance. © 2018 IUBMB Life, 70(3):183-191, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app