Add like
Add dislike
Add to saved papers

Matrine Protects Cardiomyocytes From Ischemia/Reperfusion Injury by Regulating HSP70 Expression Via Activation of the JAK2/STAT3 Pathway.

Shock 2018 December
Studies have shown that matrine showed cardiovascular protective effects; however, its role and mechanism in myocardial ischemia/reperfusion (I/R) injury remain unknown. The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway activation and elevated heat shock protein (HSP) 70 are closely related to the prevention of myocardial I/R injury. The cardioprotective effects of matrine were determined in hypoxia/reoxygenation (H/R)-treated primary rat cardiomyocytes and left anterior descending coronary artery ligation and reperfusion animal models. The molecular mechanisms of matrine in myocardial I/R injury were focused on JAK2/STAT3 pathway activation and HSP70 expression. We found that matrine significantly increased H/R-induced the suppression of cell viability, decreased lactate dehydrogenase release, creatine kinase activity, and cardiomyocytes apoptosis in vitro. Moreover, matrine notably reduced the serum levels of creatine kinase-myocardial band (CK-MB) and cardiac troponin I, lessened the infarcted area of the heart, and decreased the apoptotic index of cardiomyocytes induced by I/R in vivo. Matrine activated the JAK2/STAT3 signaling, upregulated HSP70 expression both in vitro and in vivo. The cardioprotective effects of matrine were abrogated by AG490, a JAK2 inhibitor, and HSP70 siRNA. In addition, AG490 reduced HSP70 expression increased by matrine. In conclusion, matrine attenuates myocardial I/R injury by upregulating HSP70 expression via the activation of the JAK2/STAT3 pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app