JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Metallointercalators and Metalloinsertors: Structural Requirements for DNA Recognition and Anticancer Activity.

As the carrier of the inheritable information in cells, DNA has been the target of metal complexes for over 40 years. In this chapter, the focus will be on non-covalent recognition of the highly structured DNA surface by substitutionally inert metal complexes capable of either sliding in between the normal base pairs as metallointercalators or flipping out thermodynamically destabilized mispaired nucleobases as metalloinsertors. While most of the compounds discussed are based on ruthenium(II) and rhodium(III) due to their stable octahedral coordination environment and low-spin 4d6 electronic configuration, most recent developments of alternative metal complexes, based on both transition metals and main group elements, will also be highlighted. A particular focus of the coverage is on structural data from X-ray structure analysis, which now provides details of the interaction at unprecedented details and will enable development of novel DNA binding probes for fundamental studies as well as new anticancer drug candidates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app