Add like
Add dislike
Add to saved papers

Electronic structure of stoichiometric and oxygen-deficient ferroelectric Hf 0.5 Zr 0.5 O 2 .

Nanotechnology 2018 May 12
The electronic structure of oxygen-deficient Hf0.5 Zr0.5 O2 in the non-centrosymmetric orthorhombic (ferroelectric) phase was investigated by means of x-ray photoelectron spectroscopy and first-principle density functional theory calculations. It was established that a peak in the photoelectron spectra observed at an energy above the valence band top of ferroelectric Hf0.5 Zr0.5 O2 in ion-etched samples was due to oxygen vacancies. A method for evaluating the oxygen vacancies concentration in the material from the comparison of experimental and theoretical photoelectron spectra of the valence band is proposed. It is found that oxygen polyvacancies are not formed in ferroelectric Hf0.5 Zr0.5 O2 : an energy-favorable spatial arrangement of several oxygen vacancies in the crystal corresponds to the configuration formed by noninteracting vacancies distant from each other. The oxygen vacancies in five charged states were simulated. The electron levels in the bandgap caused by charged oxygen vacancies indicate that any type of oxygen vacancies in ferroelectric Hf0.5 Zr0.5 O2 can capture both electrons and holes, i.e. can act as an amphoteric localization center for charge carriers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app