Add like
Add dislike
Add to saved papers

Polysaccharide from Fuzi protects against Ox‑LDL‑induced calcification of human vascular smooth muscle cells by increasing autophagic activity.

Polysaccharide from Fuzi (FPS) is a water‑soluble polysaccharide isolated from the traditional Chinese herbal medicine Fuzi. It has been demonstrated to protect hepatocytes against ischemia‑reperfusion injury through its potent antioxidant effects, and to attenuate starvation‑induced cytotoxicity in H9c2 cells by increasing autophagic activity. In the present study, Alizarin Red S staining was used to detect mineral deposition and reverse transcription‑quantitative polymerase chain reaction was used to detect the core binding factor α1 and smooth muscle 22α mRNA expression. To analyze autophagic activity, western blotting was used to detect microtubule‑associated protein 1A/1B light chain 3 and nucleoporin P62 expression. In addition, green fluorescent protein‑LC3 dots‑per‑cell was observed by fluorescence microscopy. It was demonstrated that oxidized low‑density lipoprotein (Ox‑LDL) could increase the calcification of human vascular smooth muscle cells (VSMCs) in a concentration‑dependent manner, and that FPS treatment had a significant protective effect against Ox‑LDL‑induced calcification of human VSMCs. Furthermore, FPS treatment alleviated the Ox‑LDL‑induced downregulation of autophagic activity, and the protective effect of FPS on Ox‑LDL‑induced calcification was attenuated by the autophagy inhibitor 3‑methyladenine. In conclusion, the present study demonstrated for the first time to the best of the authors' knowledge that FPS can protect against Ox‑LDL‑induced vascular calcification in human VSMCs, and that this likely occurs via the activation of autophagy. This supports the hypothesis that autophagy may be an endogenous protective mechanism counteracting vascular calcification, and that FPS may be used as a potential therapeutic for vascular calcification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app