Add like
Add dislike
Add to saved papers

Deoxycytidine kinase participates in the regulation of radiation-induced autophagy and apoptosis in breast cancer cells.

Deoxycytidine kinase (dCK) is a rate limiting enzyme critical for the phosphorylation of endogenous deoxynucleosides and for the anti‑tumor activity of many nucleoside analogs. dCK is activated in response to ionizing radiation (IR) and it is required for the G2/M checkpoint induced by IR. However, whether dCK plays a role in radiation-induced autophagy and apoptosis is less clear. In this study, we reported that dCK decreased IR-induced total cell death and apoptosis, and increased IR-induced autophagy in SKBR3 and MDA‑MB‑231 breast cancer cell lines. A molecular switch exists between apoptosis and autophagy. We further demonstrated that serine 74 phosphorylation was required for the regulation of autophagy. In dCK wild‑type (WT) or dCK S74E (mutant) MDA‑MB‑231 cell models, the expression levels of phospho-Akt, phospho-mammalian target of rapamycin (mTOR) and phospho-P70S6K significantly decreased following exposure to IR. Moreover, the ratio of Bcl‑2/Beclin1 (BECN1) significantly decreased in the S74E mutant cells; however, no change was observed in the ratio of Bcl‑2/BAX. Taken together, our findings indicate that phosphorylated and activated dCK inhibits IR-induced total cell death and apoptosis, and promotes IR-induced autophagy through the mTOR pathway and by inhibiting the binding of Bcl‑2 protein to BECN1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app