EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Tacrolimus Dose Optimization Strategy for Refractory Ulcerative Colitis Based on the Cytochrome P450 3A5 Polymorphism Prediction Using Trough Concentration after 24 Hours.

BACKGROUND: In the tacrolimus treatment for refractory ulcerative colitis (UC), dose adjustment is necessary because the required doses to keep appropriate drug concentrations are significantly different among individuals. Cytochrome P450 (CYP) 3A5 polymorphism affects tacrolimus blood concentrations. However, it is difficult to obtain genetic information in real clinical practice. In the present study, we investigated possible factors that may predict CYP3A5 polymorphism and proposed a dose optimization strategy based on the obtained predicting factors.

SUMMARY: We retrospectively analyzed 41 patients who underwent remission induction therapy with tacrolimus for UC in our hospital. First, we performed a correlation analysis of CYP3A5 polymorphism and pharmacokinetics. In the CYP3A5 non-expressers, the dose of tacrolimus (mg/kg) was lower and dose-adjusted trough levels (ng/mL per mg/kg) were higher compared with those in expressers. Next, we investigated factors that could predict CYP3A5 polymorphism. Trough concentration 24 h following tacrolimus administration was extracted as a significant factor. When the trough cutoff value at 24 h was set to 2.6 ng/mL, sensitivity and specificity for estimation of CYP3A5 polymorphism were 63 and 96% respectively. Therefore, when the trough concentration 24 h after administration is ≤2.6 ng/mL, the patient can be estimated as a CYP3A5 expresser and an increase in dose should be proposed. Key Message: The trough concentration 24 h after the first tacrolimus administration appears to be a useful predictor of -CYP3A5 polymorphism. Performing dose optimization strategy based on the prediction of CYP3A5 polymorphism can lead to earlier and safer remission induction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app