Add like
Add dislike
Add to saved papers

Characterization of acetylated histidine b 1 -ion structure: A competition between oxazolone and side chain imidazole moiety.

The detection of post-translational modifications of proteins is an important comprehensive research area. Over the years, proteomic studies involving protein acetylation have attracted a great deal of attention. In the present study, we have focussed on the acetylation of histidine and the intrinsic stability of b1 -ion of oxazolone ring and/or with side chain imidazole bicyclic product. The formation of oxazolone structure may occur when an amino moiety undergoes acetylation reaction and when it is present in the vicinity of the side chain imidazole moiety. Tryptic peptides generated from the proteins of Acenitobacter radioresistens MMC5-containing N-terminal histidine were explored in a standard proteomic workflow. Formation of [Formula: see text] ion with an oxazolone ring in these peptides has been supported by a tandem mass spectrometric study of a synthetic peptide and density functional theory calculations. The results obtained from this study have implications in understanding the fragmentation of the peptides generated in the proteomic workflows.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app