Add like
Add dislike
Add to saved papers

In silico binding of 4,4'-bisphenols predicts in vitro estrogenic and antiandrogenic activity.

Bisphenols, anthropogenic pollutants, leach from consumer products and have potential to be ingested and are excreted in waste. The endocrine disrupting effects of highly manufactured bisphenols (BPA, BPS, and BPF) are known, however the activities of others are not. Here, the estrogenic and androgenic activities of a series of 4,4'-bisphenols that vary at the inter-connecting bisphenol bridge were determined (BPA, BPB, BPBP, BPC2, BPE, BPF, BPS, and BPZ) and compared to in silico binding to estrogen receptor-alpha and the androgen receptor. Bioassay results showed the order of estrogenicity (BPC2 (strongest) > BPBP > BPB > BPZ > BPE > BPF > BPA > BPS, r2  = 0.995) and anti-androgenicity (BPC2 (strongest) > BPE, BPB, BPA, BPF, and BPS, r2  = 0.996) correlated to nuclear receptor binding affinities. Like testosterone and the anti-androgen hydroxyflutamide, bisphenol fit in the ligand-binding domain through hydrogen-bonding at residues Thr877 and Asn705, but also interacted at either Cys784/Ser778 or Gln711 through the other phenol ring. This suggests the 4,4'-bisphenols, like hydroxyflutamide, are androgen receptor antagonists. Hydrogen-bond trends between ERα and the 4,4'-bisphenols were limited to residue Glu353, which interacted with the -OH of one phenol and the -OH of the A ring of 17β-estradiol; hydrogen-bonding varied at the -OH of ring D of 17β-estradiol and the second phenol -OH group. While both estrogen and androgen bioassays correlated to in silico results, conservation of hydrogen-bonding residues in the androgen receptor provides a convincing picture of direct antagonist binding by 4,4'-bisphenols.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app