Add like
Add dislike
Add to saved papers

Bioluminescent In Vivo Imaging of Orthotopic Glioblastoma Xenografts in Mice.

Orthotopic rodent xenografts are an essential tool for studying glioblastoma in vivo. Xenograft growth as a function of time can only be monitored by noninvasive imaging. This chapter describes in detail how to assess xenograft size and growth using bioluminescent imaging with IVIS (in vivo imaging system). This form of imaging (a) can be performed without the help of a trained technician, (b) is a very quick procedure, allowing simultaneous imaging of up to five animals at a total experimental duration of 15 min, and (c) is cheaper than the alternatives (small animal MRI or CT). This technique relies on the stable expression of luciferase by the xenografted GBM cells. Luciferin, the substrate of luciferase, which is injected into host mice intraperitoneally, distributes throughout the mouse body and crosses the blood brain barrier. Luciferase expressed by the xenografted cells uses this substrate in a catalytic reaction, leading to the emission of visible light, which is detected by the CCD camera of the IVIS imaging system. The intensity of this emitted light correlates to the size of a given xenograft and allows comparisons of xenograft size across different animals, as well as within the same animal across different time points.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app