Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Sex- and sex hormone-related variations in energy-metabolic frontal brain asymmetries: A magnetic resonance spectroscopy study.

NeuroImage 2018 May 16
Creatine is a key regulator of brain energy homeostasis, and well-balanced creatine metabolism is central in healthy brain functioning. Still, the variability of brain creatine metabolism is largely unattended in magnetic resonance spectroscopy (MRS) research. In the human brain, marginal sex differences in creatine levels have been found in the prefrontal cortex. It is however not known to what degree these sex differences are stable or change with varying gonadal hormone levels. The current study therefore investigated creatine in the prefrontal cortex across the menstrual cycle. In addition, we explored cerebral asymmetries. Creatine, Choline (Cho), N-acetylaspartate (NAA), Myo inositol (mI), and glutamate + glutamine (Glx) were assessed three times in 15 women and 14 men using MRS. Women were tested in cycle phases of varying hormone levels (menstrual, follicular, and luteal phase). Prefrontal creatine was found to change across the menstrual cycle, in a hemisphere-specific manner. Women in the follicular phase showed increased left prefrontal creatine accompanied with reduced right prefrontal creatine, while this asymmetry was not present in the luteal phase. In men, the creatine levels remained stable across three testing sessions. In general, both men and women were found to have higher creatine levels in the left as compared to the right prefrontal cortex. Exploratory analyses of other metabolites showed similar asymmetries in NAA, Cho, and mI, while Cho also showed a menstrual cycle effect. This is the first time that sex hormone-related changes in creatine metabolism have been demonstrated in the human brain. These findings may have important methodological implications for MRS research, as it supports previous concerns against uncritical usage of creatine as a reference measure for other metabolites, assumed to be invariant across individuals and conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app