Add like
Add dislike
Add to saved papers

Study on structure, mechanical property and cell cytocompatibility of electrospun collagen nanofibers crosslinked by common agents.

Collagen electrospun scaffolds properly reproduce the framework of the extracellular matrix (ECM) of tissues that are natural with the fibrous morphology of the protein by coupling large biomimetism of the biological material. However, traditional solvents employed for collagen electrospinning lead to poor mechanical attributes and bad hydro-stability. In this work, by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride with N-hydroxysulfosuccinimide (EDC-NHS), glutaraldehyde (GTA) and genipin (GP) respectively, electrospun collagen fibers cross-linked, effectively stabilized the fiber morphology over 2months and improved the mechanical properties in both dry and wet state, especially EDC-NHS with large ultimate tensile stress and εb . The secondary structure of collagen structure still remained and had no obvious difference among various crosslinked samples according to FTIR. On the cell assessment, electrospun collagen fibers crosslinked by EDC-NHS, GTA and GP, were found to support cell adhesion, spreading and proliferation of MC3T3-E1. By contrast, GTA was more effective in preserving explicit fibrous morphology with a relatively lower cell viability both in FBS and BSA soaked mats. Interestingly, GP also had the similar cytocompatibility of MC3T3-E1 as EDC-NHS did. The study proved the feasibility of chemical crosslinker to electrospun collagen for biomedical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app