Add like
Add dislike
Add to saved papers

Endosymbiont diversity and prevalence in herbivorous spider mite populations in South-Western Europe.

Bacterial endosymbionts are known as important players of the evolutionary ecology of their hosts. However, their distribution, prevalence and diversity are still largely unexplored. To this aim, we investigated infections by the most common bacterial reproductive manipulators in herbivorous spider mites of South-Western Europe. Across 16 populations belonging to three Tetranychus species, Wolbachia was the most prevalent (ca. 61%), followed by Cardinium (12%-15%), while only few individuals were infected by Rickettsia (0.9%-3%), and none carried Arsenophonus or Spiroplasma. These endosymbionts are here reported for the first time in Tetranychus evansi and Tetranychus ludeni, and showed variable infection frequencies between and within species, with several cases of coinfections. Moreover, Cardinium was more prevalent in Wolbachia-infected individuals, which suggests facilitation between these symbionts. Finally, sequence comparisons revealed no variation of the Wolbachia wsp and Rickettsia gtlA genes, but some diversity of the Cardinium 16S rRNA, both between and within populations of the three mite species. Some of the Cardinium sequences identified belonged to distantly-related clades, and the lack of association between these sequences and spider mite mitotypes suggests repeated host switching of Cardinium. Overall, our results reveal a complex community of symbionts in this system, opening the path for future studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app