CONTROLLED CLINICAL TRIAL
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Energy costs of feeding excess protein from corn-based by-products to finishing cattle.

The increased use of by-products in finishing diets for cattle leads to diets that contain greater concentrations of crude protein (CP) and metabolizable protein (MP) than required. The hypothesis was that excess dietary CP and MP would increase maintenance energy requirements because of the energy costs of removing excess N as urea in urine. To evaluate the potential efficiency lost, two experiments were performed to determine the effects of feeding excess CP and MP to calves fed a finishing diet at 1 × maintenance energy intake (Exp. 1) and at 2 × maintenance intake (Exp. 2). In each experiment, eight crossbred Angus-based steers were assigned to two dietary treatments in a switchback design with three periods. Treatments were steam-flaked corn-based finishing diets with two dietary protein concentrations, 13.8% CP/9.63% MP (CON) or 19.5% CP/14.14% MP (dry matter basis; ECP), containing corn gluten meal to reflect a diet with excess CP and MP from corn by-products. Each period was 27 d in length with a 19-d dietary adaptation period in outdoor individual pens followed by a 4-d sample collection in one of four open circuit respiration chambers, 2-d fast in outdoor pen, and 2-d fast in one of four respiration chambers. Energy metabolism, diet digestibility, carbon (C) and nitrogen (N) balance, oxygen consumption, and carbon dioxide and methane production were measured. At both levels of intake, digestible energy as a proportion of gross energy (GE) tended to be greater (P < 0.06) in ECP than in CON steers. Metabolizable energy (ME) as a proportion of GE tended to be greater (P = 0.08) in the ECP steers than in the CON steers at 2 × maintenance intake. At 1 × and 2 × maintenance intake, urinary N excretion (g/d) was greater (P < 0.01) in the ECP steers than the CON steers. Heat production as a proportion of ME intake at 1 × maintenance tended (P = 0.06) to be greater for CON than for ECP (90.9% vs. 87.0% for CON and ECP, respectively); however, at 2 × maintenance energy intake, it was not different (63.9% vs. 63.8%, respectively). At 1 × maintenance intake, fasting heat production (FHP) was similar (P = 0.45) for both treatments, whereas at 2 × maintenance intake, FHP tended to be greater (P = 0.09) by 6% in ECP than in CON steers. Maintenance energy requirements estimated from linear and quadratic regression of energy retention on ME intake were 4% to 6% greater for ECP than for CON. Results of these studies suggest that feeding excess CP and MP from a protein source that is high in ruminally undegradable protein and low in protein quality will increase maintenance energy requirements of finishing steers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app