Add like
Add dislike
Add to saved papers

Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins.

We reported previously that a 2' fluoro-modified (2' F) phosphorothioate (PS) antisense oligonucleotides (ASOs) with 5-10-5 gapmer configuration interacted with proteins from Drosophila behavior/human splicing (DBHS) family with higher affinity than PS-ASOs modified with 2'-O-(2-methoxyethyl) (2' MOE) or 2',4'-constrained 2'-O-ethyl (cEt) did. Rapid degradation of these proteins and cytotoxicity were observed in cells treated with 2' F PS-ASO. Here, we report that 2' F gapmer PS-ASOs of different sequences caused reduction in levels of DBHS proteins and hepatotoxicity in mice. 2' F PS-ASOs induced activation of the P53 pathway and downregulation of metabolic pathways. Altered levels of RNA and protein markers for hepatotoxicity, liver necrosis, and apoptosis were observed as early as 24 to 48 hours after a single administration of the 2' F PS-ASO. The observed effects were not likely due to the hybridization-dependent RNase H1 cleavage of on- or potential off-target RNAs, or due to potential toxicity of 2' F nucleoside metabolites. Instead, we found that 2' F PS-ASO associated with more intra-cellular proteins including proteins from DBHS family. Our results suggest that protein-binding correlates positively with the 2' F modification-dependent loss of DBHS proteins and the toxicity of gapmer 2' F PS-ASO in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app