Add like
Add dislike
Add to saved papers

Study of forced degradation behavior of pramlintide acetate by HPLC and LC-MS.

Pramlintide acetate (Symlin® ), a synthetic analogue of the human hormone amylin. It was approved in March 2005 as a subcutaneous injection for the adjunctive treatment of patients who have type 1 or 2 diabetes mellitus. The objective of current investigation was to study the degradation behavior of pramlintide acetate under different ICH recommended stress conditions by HPLC and LC-MS. Pramlintide acetate was subjected to stress conditions of hydrolysis (acidic or alkaline), oxidation, photolysis and thermal decomposition. Extensive degradation products were observed under the hydrolysis, oxidation or thermal stress conditions, while minimal degradation was found in the photolytic conditions. Successful separation of drug from the degradation products was achieved by the validated chromatography (RP-HPLC and SCX-HPLC) methods. Subsequent to isolation, the molecular weight of each component was determined by LC-MS. The LC-MS m/z values and fragmentation patterns of 4 impurities matched with the predicted degradation products of pramlintide acetate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app