Add like
Add dislike
Add to saved papers

Variation in traction forces during cell cycle progression.

BACKGROUND INFORMATION: Tissue morphogenesis results from the interplay between cell growth and mechanical forces. While the impact of geometrical confinement and mechanical forces on cell proliferation has been fairly well characterised, the inverse relationship is much less understood. Here, we investigated how traction forces vary during cell cycle progression.

RESULTS: Cell shape was constrained on micropatterned substrates in order to distinguish variations in cell contractility from cell size increase. We performed traction force measurements of asynchronously dividing cells expressing a cell-cycle reporter, to obtain measurements of contractile forces generated during cell division. We found that forces tend to increase as cells progress through G1, before reaching a plateau in S phase, and then decline during G2.

CONCLUSIONS: While cell size increases regularly during cell cycle progression, traction forces follow a biphasic behaviour based on specific and opposite regulation of cell contractility during early and late growth phases.

SIGNIFICANCE: These results highlight the key role of cellular signalling in the regulation of cell contractility, independently of cell size and shape. Non-monotonous variations of cell contractility during cell cycle progression are likely to impact the mechanical regulation of tissue homoeostasis in a complex and non-linear manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app