Add like
Add dislike
Add to saved papers

Conflicting effect of chemical doping on the thermoelectric response of ordered PEDOT aggregates.

Poly(3,4-ethylenedioxythiophene) (PEDOT) semiconductor plays a relevant role in the development of organic thermoelectric (TE) devices for low-power generation. While dopant counterions are usually needed to provide electrical conductivity, their overall effects on the thermoelectric response of the systems are unknown and uncontrolled. Here, we present a first principles study of the electronic and thermal transport of PEDOT crystalline assemblies, specifically analysing the role played by tosylate dopants on the thermoelectric figure of merit of the doped system. Our results demonstrate that, beside the desired charging effect, the presence of dopants impacts the bulk configuration by inflating the packing structure and worsening the intrinsic transport properties of the PEDOT host. This provides a rationale for the necessity of controlling the optimal amount and the structural incorporation of dopant in order to maximize the thermoelectric response of organic materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app