Add like
Add dislike
Add to saved papers

Extreme temperature stability of thermally insulating graphene-mesoporous-silicon nanocomposite.

Nanotechnology 2018 April 7
We demonstrate the thermal stability and thermal insulation of graphene-mesoporous-silicon nanocomposites (GPSNC). By comparing the morphology of GPSNC carbonized at 650 °C as-formed to that after annealing, we show that this nanocomposite remains stable at temperatures as high as 1050 °C due to the presence of a few monolayers of graphene coating on the pore walls. This does not only make this material compatible with most thermal processes but also suggests applications in harsh high temperature environments. The thermal conductivity of GPSNCs carbonized at temperatures in the 500 °C-800 °C range is determined through Raman spectroscopy measurements. They indicate that the thermal conductivity of the composite is lower than that of silicon, with a value of 13 ± 1 W mK-1 at room temperature, and not affected by the thin graphene layer, suggesting a role of the high concentration of carbon related-defects as indicated by the high intensity of the D-band compared to G-band of the Raman spectra. This morphological stability at high temperature combined with a high thermal insulation make GPSNC a promising candidate for a broad range of applications including microelectromechanical systems and thermal effect microsystems such as flow sensors or IR detectors. Finally, at 120 °C, the thermal conductivity remains equal to that at room temperature, attesting to the potential of using our nanocomposite in devices that operate at high temperatures such as microreactors for distributed chemical conversion, solid oxide fuel cells, thermoelectric devices or thermal micromotors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app