Add like
Add dislike
Add to saved papers

Prediction of the Pharmacokinetics of Pravastatin as an OATP Substrate Using Plateable Human Hepatocytes With Human Plasma Data and PBPK Modeling.

Plateable human hepatocytes with human plasma were utilized to generate the uptake transporter kinetic data for pravastatin, an organic anion-transporting polypeptide (OATP) transporter substrate. The active hepatic uptake of pravastatin was determined with a Jmax value of 134.4 pmol/min/million cells and Km of 76.77 µM in plateable human hepatocytes with human plasma. The physiologically-based pharmacokinetic (PBPK) model with incorporation of these in vitro kinetic data successfully simulated the i.v. pharmacokinetic profile of pravastatin without applying scaling factor (the mean predicted area under the curve (AUC) is within 1.5-fold of the observed). Furthermore, the PBPK model also adequately described the oral plasma concentration-time profiles of pravastatin at different dose levels. The current investigation demonstrates an approach allowing us to build upon the translation of in vitro OATP uptake transporter data to in vivo, with a hope of utilizing the in vitro data for the prospective human pharmacokinetic (PK) prediction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app