Add like
Add dislike
Add to saved papers

Electrospun aniline-tetramer- co -polycaprolactone fibres for conductive, biodegradable scaffolds.

MRS Communications 2017 September
Conjugated polymers have been proposed as promising materials for scaffolds in tissue engineering applications. The restricted processability and biodegradability of conjugated polymers limit their use for biomedical applications however. Here we synthesised a block- co -polymer of aniline tetramer and PCL (AT-PCL), and processed it into fibrous non-woven scaffolds by electrospinning. We showed that fibronectin (Fn) adhesion was dependant on the AT-PCL oxidative state, with a reduced Fn unfolding length on doped membranes. Furthermore, we demonstrated the cytocompatibility and potential of these membranes to support the growth and osteogenic differentiation of MC3T3-E1 over 21 days.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app