Add like
Add dislike
Add to saved papers

Berberine inhibits the MexXY-OprM efflux pump to reverse imipenem resistance in a clinical carbapenem-resistant Pseudomonas aeruginosa isolate in a planktonic state.

Pseudomonas (P.) aeruginosa is an ubiquitous and metabolically versatile opportunistic pathogen and may cause various life-threatening diseases. Due to increasing emergence of resistance to carbapenems, novel drugs with improved antibacterial activities compared with those of traditional antibiotics are required. In the present study, berberine (BEB), a natural isoquinoline alkaloid, was used in combination with imipenem (IMP), a commonly-used carbapenem, to investigate their antibacterial activities against a clinical P. aeruginosa isolate PA012 and the potential mechanism. Screening revealed that the minimum inhibitory concentrations (MICs) of BEB and IMP were 512 and 256 µg/ml, respectively. The combination of BEB (1/4 MIC) and IMP (1/8 MIC) exhibited a synergistic effect with a fractional inhibitory concentration index of 0.375. The synergism of BEB and IMP was also demonstrated in a time-kill test and by scanning electron microscopic observation. Treatment with BEB at ¼ MIC in combination with IMP at 1/16, 1/8, 1/4 and ½ MIC revealed a concentration-dependent promoting effect of IMP on the intracellular accumulation of BEB and inhibition of bacterial adhesion. Further analysis of gene expression revealed that BEB (1/4 MIC) combined with IMP (1/8 MIC) decreased MexZ, MexX, MexY and outer membrane protein (Opr)M by 38, 35, 46 and 49% in PA012. In conclusion, these results suggested that IMP had synergistic effects with BEB against the clinical isolate PA012 via inhibition of the MexXY-OprM efflux pump.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app