Add like
Add dislike
Add to saved papers

Non-local diffusion-weighted image super-resolution using collaborative joint information.

Due to the clinical durable scanning time and other physical constraints, the spatial resolution of diffusion-weighted magnetic resonance imaging (DWI) is highly limited. Using a post-processing method to improve the resolution of DWI holds the potential to improve the investigation of smaller white-matter structures and to reduce partial volume effects. In the present study, a novel non-local mean super-resolution method was proposed to increase the spatial resolution of DWI datasets. Based on a non-local strategy, joint information from the adjacent scanning directions was taken advantage of through the implementation of a novel weighting scheme. Besides this, an efficient rotationally invariant similarity measure was introduced for further improvement of high-resolution image reconstruction and computational efficiency. Quantitative and qualitative comparisons in synthetic and real DWI datasets demonstrated that the proposed method significantly enhanced the resolution of DWI, and is thus beneficial in improving the estimation accuracy for diffusion tensor imaging as well as high-angular resolution diffusion imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app