JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

A review of thanatosis (death feigning) as an anti-predator behaviour.

Abstract: Thanatosis-also known as death-feigning and, we argue more appropriately, tonic immobility (TI)-is an under-reported but fascinating anti-predator strategy adopted by diverse prey late on in the predation sequence, and frequently following physical contact by the predator. TI is thought to inhibit further attack by predators and reduce the perceived need of the predator to subdue prey further. The behaviour is probably present in more taxa than is currently described, but even within well-studied groups the precise taxonomic distribution is unclear for a number of practical and ethical reasons. Here we synthesise the key studies investigating the form, function, evolutionary and ecological costs and benefits of TI. This review also considers the potential evolutionary influence of certain predator types in the development of the strategy in prey, and the other non-defensive contexts in which TI has been suggested to occur. We believe that there is a need for TI to be better appreciated in the scientific literature and outline potentially profitable avenues for investigation. Future use of technology in the wild should yield useful developments for this field of study.

Significance statement: Anti-predatory defences are crucial to many aspects of behavioural ecology. Thanatosis (often called death-feigning) has long been an under-appreciated defence, despite being taxonomically and ecologically widespread. We begin by providing much-needed clarification on both terminology and definition. We demonstrate how apparently disparate observations in the recent literature can be synthesised through placing the behaviour within a cost-benefit framework in comparison to alternative behavioural choices, and how aspects of the ecology differentially affect costs and benefits. Extending this, we provide novel insights into why the evolution of thanatosis can be understood in terms of coevolution between predators and prey. We offer further novel hypotheses, and discuss how these can be tested, focussing on how emerging technologies can be of great use in developing our understanding of thanatosis in free-living animals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app