Add like
Add dislike
Add to saved papers

Methylglyoxal Impairs β 2 -Adrenoceptor-Mediated Vasodilatory Mechanisms in Rat Retinal Arterioles.

Methylglyoxal, a highly reactive dicarbonyl compound, is formed as a by-product of glycolysis and plays an important role in the pathogenesis of diabetic complications, including diabetic retinopathy. However, it remains to be determined how methylglyoxal affects the regulatory mechanisms of retinal blood flow. In this study, we examined the effects of methylglyoxal on β2 -adrenoceptor-mediated vasodilatory mechanisms in rat retinal arterioles. The retinal vasodilator responses were assessed by measuring the diameter of retinal arterioles in the fundus images. Intravitreal injection of methylglyoxal significantly diminished the vasodilation of retinal arterioles induced by the β2 -adrenoceptor agonist salbutamol. The vasodilator effect of BMS-191011, a large-conductance Ca2+ -activated K+ (BKCa ) channel opener, on retinal arterioles was also attenuated by methylglyoxal. In contrast, methylglyoxal had no significant effect on retinal vasodilator response to forskolin. Methylglyoxal attenuated retinal vasodilator response to salbutamol under blockade of BKCa channels with iberiotoxin, an inhibitor of the channels. These results suggest that methylglyoxal attenuates β2 -adrenoceptor-mediated retinal vasodilation by impairing the coupling of the β2 -adrenoceptor to the guanine nucleotide-binding protein (Gs protein) and the function of the BKCa channel. Increased methylglyoxal in the eyes may contribute to the impairment of regulatory mechanisms of retinal blood flow in patients with diabetic retinopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app