Add like
Add dislike
Add to saved papers

Excited State Dipole Moments in Solution: Comparison between State-Specific and Linear-Response TD-DFT Values.

We compare different response schemes for coupling continuum solvation models to time-dependent density functional theory (TD-DFT) for the determination of solvent effects on the excited state dipole moments of solvated molecules. In particular, linear-response (LR) and state-specific (SS) formalisms are compared. Using 20 low-lying electronic excitations, displaying both localized and charge-transfer character, this study highlights the importance of applying a SS model not only for the calculation of energies, as previously reported ( J. Chem. Theory Comput. , 2015 , 11 , 5782 , DOI: 10.1021/acs.jctc.5b00679 ), but also for the prediction of excited state properties. Generally, when a range-separated exchange-correlation functional is used, both LR and SS schemes provide very similar dipole moments for local transitions, whereas differences of a few Debye units with respect to LR values are observed for CT transitions. The delicate interplay between the response scheme and the exchange-correlation functional is discussed as well, and we show that using an inadequate functional in a SS framework can yield to dramatic overestimations of the dipole moments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app