Add like
Add dislike
Add to saved papers

Correlated Chemical and Electrically Active Dopant Analysis in Catalyst-Free Si-Doped InAs Nanowires.

ACS Nano 2018 Februrary 28
Direct correlations between dopant incorporation, distribution, and their electrical activity in semiconductor nanowires (NW) are difficult to access and require a combination of advanced nanometrology methods. Here, we present a comprehensive investigation of the chemical and electrically active dopant concentrations in n-type Si-doped InAs NW grown by catalyst-free molecular beam epitaxy using various complementary techniques. N-type carrier concentrations are determined by Seebeck effect measurements and four-terminal NW field-effect transistor characterization and compared with the Si dopant distribution analyzed by local electrode atom probe tomography. With increased dopant supply, a distinct saturation of the free carrier concentration is observed in the mid-1018 cm-3 range. This behavior coincides with the incorporated Si dopant concentrations in the bulk part of the NW, suggesting the absence of compensation effects. Importantly, excess Si dopants with very high concentrations (>1020 cm-3 ) segregate at the NW sidewall surfaces, which confirms recent first-principles calculations and results in modifications of the surface electronic properties that are sensitively probed by field-effect measurements. These findings are expected to be relevant also for doping studies of other noncatalytic III-V NW systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app