Add like
Add dislike
Add to saved papers

Ordered Topographically Patterned Silicon by Insect-Inspired Capillary Submicron Stamping.

Insect-inspired capillary submicron stamping and subsequent surface-limited metal-assisted chemical etching (MACE) with ammonium bifluoride as a HF source are employed for the high-throughput production of ordered topographically patterned silicon (tpSi). Insect feet often possess hairy contact elements through which adhesive secretion is deployed. Thus, arrays of adhesive secretion drops remain as footprints on contact surfaces. Stamps for insect-inspired capillary submicron stamping having surfaces topographically patterned with contact elements mimic the functional principles of such insect feet. They contain spongy continuous nanopore networks penetrating the entire stamps. Any ink (organic or aqueous) may be supplied from the backside of the nanoporous stamps to the contact elements. We generated ordered arrays of submicron AgNO3 dots extending square millimeters on Si by manual stamping with cycle times of a few seconds under ambient conditions; at higher load, ordered holey AgNO3 films were obtained. Surface-limited MACE correspondingly yielded either macroporous tpSi or Si pillar arrays. Inkjet printing of polymer solutions onto the tpSi yielded patterns of polymer blots conformally covering the tpSi. Such blot patterns could potentially represent a starting point for the development of persistent and scratch-resistant identity labels or quick response codes on silicon surfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app