Add like
Add dislike
Add to saved papers

Analysis of redox states of protic and aprotic solutions irradiated by low linear energy transfer carbon-ion beams using a 2,2-diphenyl-1-picrylhydrazyl radical.

The quantitative evaluation of changes in the redox state induced by low linear energy transfer (LET) radiations such as the plateau region of heavy-ion beams via formation of reactive oxygen species is of considerable importance to eliminate the adverse effects of radiation therapy on normal tissues adjacent to a tumour. In this study, a 2,2-diphenyl-1-picrylhydrazyl radical (DPPH˙) was used as a redox probe to estimate the redox states of protic and aprotic solutions irradiated by low LET carbon-ion (C-ion) beams. The dose dependence of the decrease in the absorption band due to DPPH˙ (which was solubilised by β-cyclodextrin (β-CD) in water) after irradiation with low LET C-ion beams (13 keV μm-1 ) was similar to that after X-irradiation. Similar results were obtained when H2 O was replaced with methanol or acetonitrile although the slope values of the plots of the absorbance changes vs. radiation doses were twice larger as compared to the case in β-CD-containing H2 O. Moreover, DPPH˙ was more susceptible to the C-ion beam than to X-rays in isopropyl myristate (IPM), which is one of the saturated fatty acid esters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app