Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Structural Change of a Single Ag Nanoparticle Observed by Dark-field Microspectroscopy.

Silver nanoparticles (AgNPs) have been widely used as photocatalysts and nanosensors. Observation of the spectroscopy of a single AgNP greatly helps us understand the catalytic characteristics and morphology change of the AgNP during reactions. In the present study, AgNPs physically adsorbed on indium tin oxide (ITO) conductive glass were electrochemically reduced and oxidized, and the plasmonic resonance Rayleigh scattering (PRRS) spectrum of an individual AgNP was observed under a dark-field microscopy (DFM) equipped with a spectrometer. The electrochemical oxidization of the AgNP under constant potential caused a redshift of the PRRS peak for 30±5 nm. However, electrochemical reduction of the AgNP could not make the PRRS peak completely shift back to the initial position. In situ AFM and SEM characterization confirmed that very small Ag fragments (<10 nm) formed around the AgNP core during electrochemical oxidization. Results showed that dark-field microspectroscopy could be used as a sensitive tool for estimating the morphology/structural changes of nanoparticles that can hardly be observed through the cyclic voltammograms of multiple AgNPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app