Add like
Add dislike
Add to saved papers

Episodic bouts of hyperaemia and shear stress improve arterial blood flow and endothelial function.

INTRODUCTION: Exercise and heat stress lead to systemic improvements in arterial endothelial function, vascular stiffness, and cardiopulmonary capacity. The improvements in endothelial function may be primarily mediated via increases in shear stress. This study examined whether improvements in arterial function may be achieved in the absence of systemic vascular adaptations. Specifically, we hypothesized that repeated bouts of brief occlusion would improve arterial endothelial function via shear stress-dependent mechanisms.

METHODS: Eleven healthy males underwent a shear stress intervention (5 s brachial occlusion, 10 s rest) for 30 min, five times weekly for 6 weeks on one arm while the other acted as an untreated control. Ultrasound was used to assess brachial arterial forearm blood flow (FBF) and vascular conductance (FVC), diameter, and shear rate (SR), while endothelial function was assessed by flow-mediated dilatation (FMD). Post-occlusive reactive hyperaemia and pulse wave velocity (PWV) were also measured.

RESULTS: There were no changes in any of the measures in the control arm (all d < 0.2, p > 0.05). After 3 weeks of the intervention, FMD was increased from baseline (7.6 ± 0.6 vs. 5.9 ± 0.9%; d = 1.3, p = 0.038) and further increased after 6 weeks to 9.5 ± 2.6% (d = 1.7, p < 0.001). SR was also increased following the 6-week intervention (all d ≥ 0.6, p < 0.001). Resting and peak FBF and FVC were also increased in response to the intervention (all d ≥ 0.6, p < 0.001) and PWV was reduced.

CONCLUSIONS: These data demonstrate that episodic increases in shear stress elicit marked increases in arterial endothelial function and vascular reactivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app