Add like
Add dislike
Add to saved papers

Physiological and RNA-seq analyses provide insights into the response mechanism of the Cf-10-mediated resistance to Cladosporium fulvum infection in tomato.

KEY MESSAGE: Based on the physiological and RNA-seq analysis, some progress has been made in elucidating the Cf-10-mediated resistance responses to C. fulvum infection in tomato. GO and KEGG enrichment analysis revealed that the DEGs were significantly associated with defense-signaling pathways like oxidation-reduction processes, oxidoreductase activity and plant hormone signal transduction. Leaf mold, caused by the fungus Cladosporium fulvum, is one of the most common diseases affecting tomatoes worldwide. Cf series genes including Cf-2, Cf-4, Cf-5, Cf-9 and Cf-10 play very important roles in resisting tomato leaf mold. Understanding the molecular mechanism of Cf gene-mediated resistance is thus the key to facilitating genetic engineering of resistance to C. fulvum infection. Progress has been made in elucidating two Cf genes, Cf -19 and Cf -12, and how they mediate resistance responses to C. fulvum infection in tomato. However, the mechanism of the Cf-10- mediated resistance response is still unclear. In the present study, RNA-seq was used to analyze changes in the transcriptome at different stages of C. fulvum infection. A total of 2,242 differentially expressed genes (DEGs) responsive to C. fulvum between 0 and 16 days post infection (dpi) were identified, including 1,501 upregulated and 741 downregulated genes. The majority of DEGs were associated with defense-signaling pathways including oxidation-reduction processes, oxidoreductase activity and plant hormone signal transduction. Four DEGs associated with plant-pathogen interaction were uniquely activated in Cf-10 tomato and validated by qRT-PCR. In addition, physiological indicators including reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were measured at 0-21 dpi, and hormone expression [Jasmonic acid (JA) and salicylic acid (SA)] was estimated at 0 and 16 dpi to elucidate the mechanism of the Cf-10-mediated resistance response. C. fulvum infection induced the activities of POD, CAT and SOD, and decreased ROS levels. JA was determined to participate in the resistance response to C. fulvum during the initial infection period. The results of this study provide accountable evidence for the physiological and transcriptional regulation of the Cf-10-mediated resistance response to C. fulvum infection, facilitating further understanding of the molecular mechanism of Cf-10-mediated resistance to C. fulvum infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app