Add like
Add dislike
Add to saved papers

Dimeric and tetrameric forms of muscle fructose-1,6-bisphosphatase play different roles in the cell.

Oncotarget 2017 December 30
Muscle fructose 1,6-bisphosphatase (FBP2), besides being a regulatory enzyme of glyconeogenesis also protects mitochondria against calcium stress and plays a key role in regulation of the cell cycle, promoting cardiomyocytes survival. However, in cancer cells, FBP2 acts as an anti-oncogenic/anti-proliferative protein. Here, we show that the physiological function of FBP2 depends both on its level of expression in a cell as well as its oligomerization state. Animal fructose-1,6-bisphosphatases are thought to function as tetramers. We present evidence that FBP2 exists in an equilibrium between tetramers and dimers. The dimeric form is fully active and insensitive to AMP, the main allosteric inhibitor of FBP2. Tetramerization induces the sensitivity of the protein to AMP, but it requires the presence of a hydrophobic central region in which leucine 190 plays a crucial role. Only the tetrameric form of FBP2 is retained in cardiomyocyte cell nucleus whereas only the dimeric form associates with mitochondria and protects them against stress stimuli, such as elevated calcium and H2 O2 level. Remarkably, in hypoxic conditions, which are typical for many cancers, FBP2 ceases to interact with mitochondria and loses its pro-survival potential. Our results throw new light on the basis of the diverse role of FBP2 in cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app