Add like
Add dislike
Add to saved papers

P53-derived hybrid peptides induce apoptosis of synovial fibroblasts in the rheumatoid joint.

Oncotarget 2017 December 30
Loss of p53-mediated suppression by its dominant-negative counterpart is commonly observed in human cancers, and activating p73 is a therapeutic strategy in p53-mutated oncological patients. In synovial fibroblasts (SFs) from rheumatoid arthritis (RA), mutant p53 can lead to the transformation-like features with resistance to the apoptosis induction. We examined whether intra-articular (i.a.) administration of p53-derived hybrid peptides to activate p73 can induce apoptosis of SFs by using adenoviral vectors encoding 37 amino acid (Ad37AA), a p53-derived hybrid peptide capable of activating p73, to transduce SFs in vitro and inject collagen-induced arthritis (CIA) joints in vivo . Increased p73 expression was found in synovial lining layers and SFs of RA patients and CIA rats. Higher expression of p53 up-regulated modulator of apoptosis (PUMA) and Bax with enhanced apoptosis were found in Ad37AA-transduced SFs, and silencing p73 abrogated the up-regulation of PUMA and Bax. Articular indexes and histologic scores were reduced in Ad37AA-injected joints with decreased SF densities, increased apoptotic cell numbers, and higher PUMA expression levels. We demonstrate that i.a. administration of p53-derived hybrid peptides can activate p73 to induce apoptosis of SFs and ameliorate the rheumatoid joint, implicating an enhancement of the p73-dependent apoptotic mechanism as a pharmacological strategy in the RA therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app