Add like
Add dislike
Add to saved papers

CXCR2 + MDSCs promote breast cancer progression by inducing EMT and activated T cell exhaustion.

Oncotarget 2017 December 30
Although myeloid-derived suppressor cells (MDSCs) have been demonstrated to contribute to tumor initiation, progression and metastasis, however, which MDSC subsets are preferentially expanded and activated, and what's the key molecular mechanism responsible for specific MDSC subsets in promoting tumor progression need to be fully addressed. Here we identify that Ly6Gmi Ly6Clo CD11b+ CXCR2+ subpopulation (named CXCR2+ MDSCs) are predominately expanded and recruited in systemic and local tumor microenvironment during breast cancer progression and metastasis. The proportion of CXCR2+ MDSCs is inversely correlated with the infiltration of CD4+ or CD8+ T cells. Besides, CXCR2+ MDSCs promote breast cancer growth and metastasis to lung and/or lymph node in vivo . Furthermore, CXCR2+ MDSCs induce epithelial mesenchymal transition (EMT) of breast cancer cells via IL-6. Moreover, CXCR2+ MDSCs upregulate the expression of immunosuppressive molecules programmed cell death protein 1(PD1), PD1 ligand 1 (PDL1), lymphocyte activation gene 3 protein (LAG3), cytotoxic T lymphocyte antigen 4 (CTLA4), and T cell immunoglobulin domain and mucin domain protein 3 (TIM3) on CD4+ or CD8+ T cells, and induce exhaustion of the activated T cells partially via IFN-γ. These results demonstrate that CXCR2+ MDSCs accelerate breast cancer progression via directly inducing cancer cell EMT and indirectly promoting T cell exhaustion, suggesting that CXCR2+ MDSCs may be a potential therapeutic target of breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app