Add like
Add dislike
Add to saved papers

Copper nanoparticles toxicity: Laboratory strains verses environmental bacterial isolates.

Nanoparticles have emerged as significant environmental contaminants and their impact has been studied using laboratory strains of bacteria. This study focuses on investigating the response of environmental isolate and laboratory strains of E. coli to 50 and 100 nm size of copper nanoparticles (CuNPs). The laboratory cultures included pathogenic and non-pathogenic strains. The environmental isolate and the non-pathogenic E. coli strain showed different inactivation patterns. After 2 h exposure to 50 nm CuNPs, the environmental isolate and the lab strain of E. coli lost 7.22 and 6.47 log; whereas the reduction of 6.16 and 6.68 log resulted after exposure to 100 nm CuNPs, respectively. The pathogenic E. coli O157:H7 exposed to 50 and 100 nm CuNPs for 2 h resulted in 5.24 and 6.54 log reduction, respectively. Although the environmental isolate and the laboratory strains of E. coli showed similar inactivation trends; they exhibited different toxicity elicitation mechanisms after exposure to the CuNPs. The pathogenic and non-pathogenic strains elicited significantly different levels of glutathione reductase (GR) activities, an enzyme critical for protection against radicals. Similarly, the environmental isolate and the lab strains of E. coli exhibited opposite trend in GR activities. These results clearly indicate divergence in the toxicity elicitation in the environmental isolate versus the laboratory strains from exposure to CuNPs, which highlights the need for an in-depth investigation of the impact of NPs on the biological processes and long-term effect of high load of NPs on the stability of aquatic and terrestrial ecologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app